
zenoh-python
Release 0.10.1-rc

ZettaScale Zenoh team, <zenoh@zettascale.tech>

Feb 28, 2024

CONTENTS

1 Quick start examples: 3
1.1 Publish a key/value pair onto Zenoh . 3
1.2 Subscribe to a set of keys with Zenoh . 3
1.3 Get keys/values from zenoh . 3

Python Module Index 25

Index 27

i

ii

zenoh-python, Release 0.10.1-rc

[Zenoh](https://zenoh.io) /zeno/ is a stack that unifies data in motion, data at rest and computations. It elegantly blends
traditional pub/sub with geo distributed storage, queries and computations, while retaining a level of time and space
efficiency that is well beyond any of the mainstream stacks.

Before delving into the examples, we need to introduce few Zenoh concepts. First off, in Zenoh you will deal with
Resources, where a resource is made up of a key and a value. The other concept you’ll have to familiarize yourself
with are key expressions, such as robot/sensor/temp, robot/sensor/*, robot/**, etc. As you can gather, the
above key expression denotes set of keys, while the * and ** are wildcards representing respectively (1) a single chunk
(non-empty sequence of characters that doesn’t contain /), and (2) any amount of chunks (including 0).

Below are some examples that highlight these key concepts and show how easy it is to get started with.

CONTENTS 1

https://zenoh.io

zenoh-python, Release 0.10.1-rc

2 CONTENTS

CHAPTER

ONE

QUICK START EXAMPLES:

1.1 Publish a key/value pair onto Zenoh

>>> import zenoh
>>> z = zenoh.open()
>>> z.put('/demo/example/hello', 'Hello World!')

1.2 Subscribe to a set of keys with Zenoh

>>> import zenoh, time
>>> def listener(sample):
>>> print(f"{sample.key_expr} => {sample.payload.decode('utf-8')}")
>>>
>>> z = zenoh.open()
>>> subscriber = z.subscribe('/demo/example/**', listener)
>>> time.sleep(60)
>>> subscriber.undeclare()

1.3 Get keys/values from zenoh

>>> import zenoh
>>> z = zenoh.open()
>>> for response in z.get('/demo/example/**', zenoh.Queue()):
>>> response = response.ok
>>> print(f"{response.key_expr} => {response.payload.decode('utf-8')}")

3

zenoh-python, Release 0.10.1-rc

1.3.1 module zenoh

zenoh.init_logger()

Initialize the logger used by the Rust implementation of this API.

Once initialized, you can configure the logs displayed by the API using the RUST_LOG environment variable. For
instance, start python with the debug logs available:

$ RUST_LOG=debug python

More details on the RUST_LOG configuration on https://docs.rs/env_logger/latest/env_logger

zenoh.open(*args, **kwargs)
Open a Zenoh session.

Parameters
config (Config) – The configuration of the Zenoh session

Return type
Session

Example

>>> import zenoh
>>> s = zenoh.open(zenoh.Config())

zenoh.scout(handler=None, what=None, config=None, timeout=None)
Scout for routers and/or peers.

This spawns a task that periodically sends scout messages for a specified duration and returns a list of received
Hello messages.

Parameters

• what (str | None) – The kind of zenoh process to scout for

• config (Config | None) – The configuration to use for scouting

• timeout – the duration of scout (in seconds)

• handler (IHandler[Hello, Any, Any] | IClosure[Hello, Any] |
Tuple[IClosure, Any] | Tuple[Callable[[Hello], Any], Callable[[],
None], Any] | Tuple[Callable[[Hello], Any], Callable[[], None]] |
Callable[[Hello], Any] | None) –

Return type
list of Hello

Example

>>> import zenoh
>>> for hello in zenoh.scout(what = "peer|router", timeout=1.0).receiver():
... print(hello)

4 Chapter 1. Quick start examples:

https://docs.rs/env_logger/latest/env_logger

zenoh-python, Release 0.10.1-rc

Hello

class zenoh.Hello

Represents a single Zenoh node discovered through scouting.

property locators: List[str]

The locators through which this node may be adressed.

property whatami: str

The node’s type, returning either None, ‘peer’, ‘router’, or ‘client’.

property zid: ZenohId

The node’s Zenoh UUID.

Config

class zenoh.Config

static from_file(filename)
Reads the configuration from a file. The file’s extension must be json, json5 or yaml.

Parameters
filename (str) –

static from_json5(json)
Reads the configuration from a JSON5 string.

JSON5 is a superset of JSON, so any JSON string is a valid input for this function.

Parameters
json (str) –

static from_obj(obj)
Reads the configuration from obj as if it was a JSON file.

get_json(path)
Returns the part of the configuration at path, in a JSON-serialized form.

Parameters
path (str) –

Return type
str

insert_json5(path, value)
Inserts the provided value (read from JSON) at the given path in the configuration.

Parameters

• path (str) –

• value (str) –

Return type
str

1.3. Get keys/values from zenoh 5

zenoh-python, Release 0.10.1-rc

Session

class zenoh.Session(config=None)
A Zenoh Session, the core interraction point with a Zenoh network.

Note that most applications will only need a single instance of Session. You should _never_ construct one ses-
sion per publisher/subscriber, as this will significantly increase the size of your Zenoh network, while preventing
potential locality-based optimizations.

Parameters
config (Config | Any) –

close()

Attempts to close the Session.

The session will only be closed if all publishers, subscribers and queryables based on it have been unde-
clared, and there are no more python references to it.

config()

Returns a configuration object that can be used to alter the session’s configuration at runtime.

Note that in Python specifically, the config you passed to the session becomes the result of this function if
you passed one, letting you keep using it.

Return type
Config

declare_keyexpr(keyexpr)
Informs Zenoh that you intend to use the provided Key Expression repeatedly.

This function returns an optimized representation of the passed keyexpr.

It is generally not needed to declare key expressions, as declaring a subscriber, a queryable, or a publisher
will also inform Zenoh of your intent to use their key expressions repeatedly.

Parameters
keyexpr (KeyExpr | _KeyExpr | str) –

Return type
KeyExpr

declare_publisher(keyexpr, priority=None, congestion_control=None)
Declares a publisher, which may be used to send values repeatedly onto a same key expression.

Written resources that match the given key will only be sent on the network if matching subscribers exist
in the system.

Parameters

• keyexpr (KeyExpr | _KeyExpr | str) – The key expression to publish to

• priority (Priority | None) – The priority to use when routing the published data

• congestion_control (CongestionControl | None) – The congestion control to use
when routing the published data

Return type
Publisher

Examples

6 Chapter 1. Quick start examples:

zenoh-python, Release 0.10.1-rc

>>> import zenoh
>>> s = zenoh.open({})
>>> pub = s.declare_publisher('key/expression')
>>> pub.put('value')

declare_pull_subscriber(keyexpr, handler, reliability=None)
Declares a pull-mode subscriber, which will receive a single published sample with a key expression inter-
secting keyexpr any time its pull method is called.

These samples are passed to the handler’s closure as instances of the Sample class. The handler can
typically be a queue or a callback. The handler’s receiver is returned as the receiver field of the returned
PullSubscriber.

Parameters

• keyexpr (KeyExpr | _KeyExpr | str) – The key expression to subscribe to

• handler (IHandler[Sample, Any, Any] | IClosure[Sample, Any] |
Tuple[IClosure, Any] | Tuple[Callable[[Sample], Any], Callable[[],
None], Any] | Tuple[Callable[[Sample], Any], Callable[[], None]] |
Callable[[Sample], Any]) –

• reliability (Reliability | None) – the reliability to use when routing the sub-
scribed samples

Return type
PullSubscriber

Examples

>>> import zenoh
>>> s = zenoh.open({})
>>> sub = s.declare_pull_subscriber('key/expression', lambda sample:
... print(f"Received '{sample.key_expr}': '{sample.payload.decode('utf-8')}'
→˓"))
...
>>> sub.pull()

declare_queryable(keyexpr, handler, complete=None)
Declares a queryable, which will receive queries intersecting with keyexpr.

These queries are passed to the handler as instances of the Query class. The handler can typically be a
queue or a callback. The handler’s receiver is returned as the receiver field of the returned Queryable. The
replies can be sent back by calling the reply`function of the `Query.

Examples
Parameters

• keyexpr (KeyExpr | _KeyExpr | str) –

• handler (IHandler[Query, Any, Any] | IClosure[Query, Any] |
Tuple[IClosure, Any] | Tuple[Callable[[Query], Any], Callable[[],
None], Any] | Tuple[Callable[[Query], Any], Callable[[], None]] |
Callable[[Query], Any]) –

• complete (bool | None) –

Using a callback:

1.3. Get keys/values from zenoh 7

zenoh-python, Release 0.10.1-rc

>>> import zenoh
>>> s = zenoh.open({})
>>> qabl = s.declare_queryable('key/expression', lambda query:
... query.reply(zenoh.Sample('key/expression', 'value')))

Using a queue:

>>> import zenoh
>>> s = zenoh.open({})
>>> qabl = s.declare_queryable('key/expression', zenoh.Queue())
>>> while True:
... query = qabl.receiver.get()
... query.reply(zenoh.Sample('key/expression', 'value'))
... del query

IMPORTANT: due to how RAII and Python work, you MUST bind this function’s return value to a variable
in order for it to function as expected. This is because as soon as a value is no longer referenced in Python,
that value’s destructor will run, which will undeclare your queryable, stopping it immediately.

declare_subscriber(keyexpr, handler, reliability=None)
Declares a subscriber, which will receive any published sample with a key expression intersecting keyexpr.

These samples are provided to the handler as instances of the Sample class. The handler can typically be
a queue or a callback. The handler’s receiver is returned as the receiver field of the returned Subscriber.

Parameters

• keyexpr (KeyExpr | _KeyExpr | str) – The key expression to subscribe to

• handler (IHandler[Sample, Any, Any] | IClosure[Sample, Any] |
Tuple[IClosure, Any] | Tuple[Callable[[Sample], Any], Callable[[],
None], Any] | Tuple[Callable[[Sample], Any], Callable[[], None]] |
Callable[[Sample], Any]) –

• reliability (Reliability | None) – the reliability to use when routing the sub-
scribed samples

Return type
Subscriber

Examples

Using a callback:

>>> import zenoh
>>> s = zenoh.open({})
>>> sub = s.declare_subscriber('key/expression', lambda sample:
... print(f"Received '{sample.key_expr}': '{sample.payload.decode('utf-8')}'
→˓")

Using a queue:

>>> import zenoh
>>> s = zenoh.open({})
>>> sub = s.declare_subscriber('key/expression', zenoh.Queue())
>>> for sample in sub.receiver:
>>> print(f"{sample.key_expr}: {sample.payload.decode('utf-8')}")

8 Chapter 1. Quick start examples:

zenoh-python, Release 0.10.1-rc

IMPORTANT: due to how RAII and Python work, you MUST bind this function’s return value to a vari-
able in order for it to function as expected. This is because as soon as a value is no longer referenced in
Python, that value’s destructor will run, which will undeclare your subscriber, deactivating the subscription
immediately.

delete(keyexpr, priority=None, congestion_control=None)
Deletes the values associated with the keys included in keyexpr.

This uses the same mechanisms as session.put, and will be received by subscribers. This operation is
especially useful with storages.

Parameters

• keyexpr (KeyExpr | _KeyExpr | str) – The key expression to publish

• priority (Priority | None) – The priority to use when routing the delete

• congestion_control (CongestionControl | None) – The congestion control to use
when routing the delete

Examples

>>> import zenoh
>>> s = zenoh.open({})
>>> s.delete('key/expression')

get(selector, handler, consolidation=None, target=None, value=None)
Emits a query, which queryables with intersecting selectors will be able to reply to.

The replies are provided to the given handler as instances of the Reply class. The handler can typically be
a queue, a single callback or a pair of callbacks. The handler’s receiver is returned by the get function.

Parameters

• selector (Selector | _Selector | KeyExpr | _KeyExpr | str) – The selec-
tion of keys to query

• handler (IHandler[Reply, Any, Receiver] | IClosure[Reply, Any]
| Tuple[IClosure, Receiver] | Tuple[Callable[[Reply], Any],
Callable[[], None], Receiver] | Tuple[Callable[[Reply], Any],
Callable[[], None]] | Callable[[Reply], Any]) –

• consolidation (QueryConsolidation | None) – The consolidation to apply to
replies

• target (QueryTarget | None) – The queryables that should be target to this query

• value (IValue | bytes | str | int | float | object | None) – An optional
value to attach to this query

Returns
The receiver of the handler

Return type
Receiver

Examples

Using a queue:

1.3. Get keys/values from zenoh 9

zenoh-python, Release 0.10.1-rc

>>> import zenoh
>>> s = zenoh.open({})
>>> for reply in s.get('key/expression', zenoh.Queue()):
... try:
... print(f"Received '{reply.ok.key_expr}': '{reply.ok.payload.decode(
→˓'utf-8')}'")
... except:
... print(f"Received ERROR: '{reply.err.payload.decode('utf-8')}'")

Using a single callback:

>>> s.get('key/expression', lambda reply:
... print(f"Received '{reply.ok.key_expr}': '{reply.ok.payload.decode('utf-8
→˓')}'")
... if reply.ok is not None else print(f"Received ERROR: '{reply.err.
→˓payload.decode('utf-8')}'"))

Using a reply callback and a termination callback:

>>> s.get('key/expression', (
... lambda reply:
... print(f"Received '{reply.ok.key_expr}': '{reply.ok.payload.decode(
→˓'utf-8')}'")
... if reply.ok is not None else print(f"Received ERROR: '{reply.err.
→˓payload.decode('utf-8')}'"),
... lambda:
... print("No more replies")))

info()

Returns an accessor for informations about this Session

put(keyexpr, value, encoding=None, priority=None, congestion_control=None, sample_kind=None)
Sends a value over Zenoh.

Subscribers on an expression that intersect with keyexpr will receive the sample. Storages will store the
value if keyexpr is non-wild, or update the values for all known keys that are included in keyexpr if it is
wild.

Parameters

• keyexpr (KeyExpr | _KeyExpr | str) – The key expression to publish

• value (IValue | bytes | str | int | float | object) – The value to send

• priority (Priority | None) – The priority to use when routing the published data

• congestion_control (CongestionControl | None) – The congestion control to use
when routing the published data

• sample_kind (SampleKind | None) – The kind of sample to send

Examples

>>> import zenoh
>>> s = zenoh.open({})
>>> s.put('key/expression', 'value')

10 Chapter 1. Quick start examples:

zenoh-python, Release 0.10.1-rc

Info

class zenoh.Info(session)

Parameters
session (_Session) –

peers_zid()

Returns the neighbooring peers’ identifiers

Return type
List[ZenohId]

routers_zid()

Returns the neighbooring routers’ identifiers

Return type
List[ZenohId]

zid()

Returns this Zenoh Session’s identifier

Return type
ZenohId

KeyExpr

class zenoh.KeyExpr(expr)
Zenoh’s address space is designed around keys which serve as the names of ressources.

Keys are slash-separated lists of non-empty UTF8 strings. They may not contain the following characters: $*#?.

Zenoh’s operations are executed on key expressions, a small language that allows the definition of sets of keys
via the use of wildcards:

• * is the single-chunk wildcard, and will match any chunk: a/*/c will match a/b/c, a/hello/c, etc. . .

• ** is the 0 or more chunks wildcard: a/**/c matches a/c, a/b/c, a/b/hello/c, etc. . .

• $* is the subchunk wildcard, it will match any amount of non-/ characters: a/b$*matches a/b, a/because,
a/blue. . . but not a/c nor a/blue/c

To allow for better performance and gain the property that two key expressions define the same set if and only if
they are the same string, the rules of canon form are mandatory for a key expression to be propagated by a Zenoh
network:

• **/** may not exist, as it could always be replaced by the shorter **,

• **/* may not exist, and must be written as its equivalent */** instead,

• $* may not exist alone in a chunk, as it must be written * instead.

The KeyExpr.autocanonize constructor exists to correct eventual infrigements of the canonization rules.

A KeyExpr is a string that has been validated to be a valid Key Expression.

Parameters
expr (KeyExpr | _KeyExpr | str) –

1.3. Get keys/values from zenoh 11

zenoh-python, Release 0.10.1-rc

static autocanonize(expr)
This alternative constructor for key expressions will attempt to canonize the passed expression before check-
ing if it is valid.

Raises a zenoh.ZError exception if expr is not a valid key expression.

Parameters
expr (str) –

Return type
KeyExpr

includes(other)
This method returns True if all of the keys defined by other also belong to the set defined by self.

Parameters
other (KeyExpr | _KeyExpr | str) –

Return type
bool

intersects(other)
This method returns True if there exists at least one key that belongs to both sets defined by self and
other.

Parameters
other (KeyExpr | _KeyExpr | str) –

Return type
bool

undeclare(session)
Undeclares a key expression previously declared on the session.

Parameters
session (Session) –

Sample

class zenoh.Sample(key, value, kind=None, timestamp=None)
A KeyExpr-Value pair, annotated with the kind (PUT or DELETE) of publication used to emit it and a timestamp.

Parameters

• key (KeyExpr | _KeyExpr | str) –

• value (IValue | bytes | str | int | float | object) –

• kind (SampleKind) –

• timestamp (Timestamp) –

property encoding: Encoding

A shortcut to self.value.encoding

property key_expr: KeyExpr

The sample’s key expression

property kind: SampleKind

The sample’s kind

12 Chapter 1. Quick start examples:

zenoh-python, Release 0.10.1-rc

property payload: bytes

A shortcut to self.value.payload

property timestamp: Timestamp | None

The sample’s timestamp. May be None.

property value: Value

The sample’s value

SampleKind

class zenoh.SampleKind(inner)
Similar to an HTTP METHOD: only PUT and DELETE are currently supported.

Parameters
inner (_SampleKind) –

static DELETE()

Return type
SampleKind

static PUT()

Return type
SampleKind

Value

class zenoh.Value(payload, encoding=None)
A Value is a pair of a binary payload, and a mime-type-like encoding string.

When constructed with encoding==None, the encoding will be selected depending on the payload’s type.

Parameters

• payload (IValue | bytes | str | int | float | object) –

• encoding (Encoding) –

static autoencode(value)
Automatically encodes the value based on its type

Parameters
value (IValue | bytes | str | int | float | object) –

Return type
Value

1.3. Get keys/values from zenoh 13

zenoh-python, Release 0.10.1-rc

Encoding

class zenoh.Encoding(inner)

Parameters
inner (_Encoding) –

static APP_CUSTOM()

Return type
Encoding

static APP_FLOAT()

Return type
Encoding

static APP_INTEGER()

Return type
Encoding

static APP_JSON()

Return type
Encoding

static APP_OCTET_STREAM()

Return type
Encoding

static APP_PROPERTIES()

Return type
Encoding

static APP_SQL()

Return type
Encoding

static APP_XHTML_XML()

Return type
Encoding

static APP_XML()

Return type
Encoding

static APP_X_WWW_FORM_URLENCODED()

Return type
Encoding

static EMPTY()

Return type
Encoding

14 Chapter 1. Quick start examples:

zenoh-python, Release 0.10.1-rc

static IMAGE_GIF()

Return type
Encoding

static IMAGE_JPEG()

Return type
Encoding

static IMAGE_PNG()

Return type
Encoding

static TEXT_CSS()

Return type
Encoding

static TEXT_CSV()

Return type
Encoding

static TEXT_HTML()

Return type
Encoding

static TEXT_JAVASCRIPT()

Return type
Encoding

static TEXT_JSON()

Return type
Encoding

static TEXT_PLAIN()

Return type
Encoding

static TEXT_XML()

Return type
Encoding

append(s)

Parameters
s (str) –

static from_str(s)

Parameters
s (str) –

Return type
Encoding

1.3. Get keys/values from zenoh 15

zenoh-python, Release 0.10.1-rc

Publisher

class zenoh.Publisher(p)
Use Publisher (constructed with Session.declare_publisher) when you want to send values often for the
same key expression, as declaring them informs Zenoh that this is you intent, and optimizations will be set up to
do so.

Parameters
p (_Publisher) –

delete()

An optimised version of session.delete(self.key_expr)

property key_expr: KeyExpr

This Publisher’s key expression

put(value, encoding=None)
An optimised version of session.put(self.key_expr, value, encoding=encoding)

Parameters

• value (IValue | bytes | str | int | float | object) –

• encoding (Encoding | None) –

undeclare()

Stops the publisher.

CongestionControl

class zenoh.CongestionControl(inner)
Defines the network’s behaviour regarding a message when heavily congested.

Parameters
inner (_CongestionControl) –

static BLOCK()

Prevents the message from being dropped at all cost. In the face of heavy congestion on a part of the
network, this could result in your publisher node blocking.

Return type
CongestionControl

static DROP()

Allows the message to be dropped if all buffers are full.

Return type
CongestionControl

16 Chapter 1. Quick start examples:

zenoh-python, Release 0.10.1-rc

Priority

class zenoh.Priority(inner)
The priority of a sending operation.

They are ordered à la Linux priority: Priority.REAL_TIME() < Priority.INTERACTIVE_HIGH() <
Priority.INTERACTIVE_LOW() < Priority.DATA() < Priority.BACKGROUND()

Parameters
inner (_SampleKind) –

static BACKGROUND()

Return type
Priority

static DATA()

Return type
Priority

static DATA_HIGH()

Return type
Priority

static DATA_LOW()

Return type
Priority

static INTERACTIVE_HIGH()

Return type
Priority

static INTERACTIVE_LOW()

Return type
Priority

static REAL_TIME()

Return type
Priority

Subscriber

class zenoh.Subscriber(s, receiver=None)
A handle to a subscription.

Its main purpose is to keep the subscription active as long as it exists.

When constructed through Session.declare_subscriber(session, keyexpr, handler), it exposes
handler’s receiver through self.receiver.

Parameters
s (_Subscriber) –

undeclare()

Undeclares the subscription

1.3. Get keys/values from zenoh 17

zenoh-python, Release 0.10.1-rc

PullSubscriber

class zenoh.PullSubscriber(s, receiver=None)
A handle to a pull subscription.

Its main purpose is to keep the subscription active as long as it exists.

When constructed through Session.declare_pull_subscriber(session, keyexpr, handler), it ex-
poses handler’s receiver through self.receiver.

Calling self.pull() will prompt the Zenoh network to send a new sample when available.

Parameters
s (_PullSubscriber) –

pull()

Prompts the Zenoh network to send a new sample if available. Note that this sample will not be returned
by this function, but provided to the handler’s callback.

undeclare()

Undeclares the subscription

Reliability

class zenoh.Reliability(inner)
Used by subscribers to inform the network of the reliability it wishes to obtain.

Parameters
inner (_Reliability) –

static BEST_EFFORT()

Informs the network that dropping some messages is acceptable

Return type
CongestionControl

static RELIABLE()

Informs the network that this subscriber wishes for all publications to reliably reach it.

Note that if a publisher puts a sample with the CongestionControl.DROP() option, this reliability re-
quirement may be infringed to prevent slow readers from blocking the network.

Return type
CongestionControl

Query

class zenoh.Query(inner)

Parameters
inner (_Query) –

decode_parameters()

Decodes the value selector into a dictionary.

Raises a ZError if duplicate keys are found, as they might otherwise be used for HTTP Parameter Pollution
like attacks.

18 Chapter 1. Quick start examples:

zenoh-python, Release 0.10.1-rc

Return type
Dict[str, str]

property key_expr: KeyExpr

The query’s targeted key expression

property parameters: str

The query’s value selector. If you’d rather not bother with parsing it yourself, use self.
decode_parameters() instead.

reply(sample)
Allows you to reply to a query. You may send any amount of replies to a single query, including 0.

Parameters
sample (Sample) –

reply_err(value)
Allows you to reply to a query with an error. You may send any amount of replies to a single query, including
0. Sending error responses does not exclude sending other responses.

Parameters
value (IValue | bytes | str | int | float | object) –

property selector: Selector

The query’s selector as a whole.

property value: Value | None

The query’s value.

Selector

class zenoh.Selector(selector)
A selector is the combination of a [Key Expression](crate::prelude::KeyExpr), which defines the set of keys that
are relevant to an operation, and a parameters, a set of key-value pairs with a few uses:

• specifying arguments to a queryable, allowing the passing of Remote Procedure Call parameters

• filtering by value,

• filtering by metadata, such as the timestamp of a value,

When in string form, selectors look a lot like a URI, with similar semantics:

• the key_expr before the first ? must be a valid key expression.

• the parameters after the first ? should be encoded like the query section of a URL:

– key-value pairs are separated by &,

– the key and value are separated by the first =,

– in the absence of =, the value is considered to be the empty string,

– both key and value should use percent-encoding to escape characters,

– defining a value for the same key twice is considered undefined behavior.

Zenoh intends to standardize the usage of a set of keys. To avoid conflicting with RPC parameters, the Zenoh
team has settled on reserving the set of keys that start with non-alphanumeric characters.

This document will summarize the standardized keys for which Zenoh provides helpers to facilitate coherent
behavior for some operations.

1.3. Get keys/values from zenoh 19

zenoh-python, Release 0.10.1-rc

Queryable implementers are encouraged to prefer these standardized keys when implementing their associated
features, and to prefix their own keys to avoid having conflicting keys with other queryables.

Here are the currently standardized keys for Zenoh:

• _time: used to express interest in only values dated within a certain time range, values for this key must
be readable by the [Zenoh Time DSL](zenoh_util::time_range::TimeRange) for the value to be considered
valid.

• _filter: TBD Zenoh intends to provide helper tools to allow the value associated with this key to be
treated as a predicate that the value should fulfill before being returned. A DSL will be designed by the
Zenoh team to express these predicates.

Parameters
selector (Selector | _Selector | KeyExpr | _KeyExpr | str) –

decode_parameters()

Decodes the value selector part of the selector.

Raises a ZError if some keys were duplicated: duplicated keys are considered undefined behaviour, but we
encourage you to refuse to process incoming messages with duplicated keys, as they might be attempting
to use HTTP Parameter Pollution like exploits.

Return type
Dict[str, str]

property key_expr: KeyExpr

The key expression part of the selector.

property parameters

The value selector part of the selector.

property set_parameters

The value selector part of the selector.

QueryTarget

class zenoh.QueryTarget(inner)

Parameters
inner (_QueryTarget) –

QueryConsolidation

class zenoh.QueryConsolidation(inner)

Parameters
inner (_QueryConsolidation) –

20 Chapter 1. Quick start examples:

zenoh-python, Release 0.10.1-rc

Reply

class zenoh.Reply(inner)
A reply to a query (Session.get).

A single query can result in multiple replies from multiple queryables.

Parameters
inner (_Reply) –

property err: Value

The reply’s error value.

Raises a ZError if the self is actually an ok reply.

property is_ok: bool

Checks if the reply is ok.

Returns True if the reply is ok, False otherwise

property ok: Sample

The reply’s inner data sample.

Raises a ZError if the self is actually an err reply.

property replier_id: ZenohId

The reply’s sender’s id.

Queryable

class zenoh.Queryable(inner, receiver)
A handle to a queryable.

Its main purpose is to keep the queryable active as long as it exists.

When constructed through Session.declare_queryable(session, keyexpr, handler), it exposes
handler’s receiver through self.receiver.

Parameters
inner (_Queryable) –

undeclare()

Stops the queryable.

ZenohId

class zenoh.ZenohId

A Zenoh UUID

1.3. Get keys/values from zenoh 21

zenoh-python, Release 0.10.1-rc

Timestamp

class zenoh.Timestamp

A timestamp taken from the Zenoh HLC (Hybrid Logical Clock).

These timestamps are guaranteed to be unique, as each machine annotates its perceived time with a UUID, which
is used as the least significant part of the comparison operation.

property get_time: int

Returns the time part, as generated by the Zenoh HLC in NTP64 format (See https://datatracker.ietf.org/
doc/html/rfc5905#section-6).

property seconds_since_unix_epoch: float

Returns the number of seconds since the Unix Epoch.

Considering the large number of seconds since the Unix Epoch, the precision of the resulting f64 is in the
order of microseconds. Therefore, it should not be used for comparison. Directly comparing Timestamp
objects is preferable.

class zenoh.Closure(closure, type_adaptor=None, prevent_direct_calls=False)
A Closure is a pair of a call function that will be used as a callback, and a drop function that will be called
when the closure is destroyed.

property call: Callable[[In], Out]

Returns the closure’s call function as a lambda.

property drop: Callable[[], None]

Returns the closure’s destructor as a lambda.

class zenoh.Handler(input, type_adaptor=None, prevent_direct_calls=True)
A Handler is a value that may be converted into a callback closure for zenoh to use on one side, while possibly
providing a receiver for the data that zenoh would provide through that callback.

Note that the values will be piped onto a Queue before being sent to your handler by another Thread
unless either:

a) input is already an instance of Closure or Handler where input.closure is an instance of
Closure

b) prevent_direct_calls is set to False

property closure: IClosure[In, Out]

The part of the handler that should be passed as a callback to a zenoh function.

property receiver: Receiver

The part of the handler that should be used as the receiver when the handler is channel-like.

class zenoh.IClosure(*args, **kwds)
A Closure is a pair of a call function that will be used as a callback, and a drop function that will be called
when the closure is destroyed.

abstract property call: Callable[[In], Out]

Returns the closure’s call function as a lambda.

abstract property drop: Callable[[], None]

Returns the closure’s destructor as a lambda.

class zenoh.IHandler(*args, **kwds)
A Handler is a value that may be converted into a callback closure for zenoh to use on one side, while possibly
providing a receiver for the data that zenoh would provide through that callback.

22 Chapter 1. Quick start examples:

https://datatracker.ietf.org/doc/html/rfc5905#section-6
https://datatracker.ietf.org/doc/html/rfc5905#section-6

zenoh-python, Release 0.10.1-rc

abstract property closure: IClosure[In, Out]

The part of the handler that should be passed as a callback to a zenoh function.

abstract property receiver: Receiver

The part of the handler that should be used as the receiver when the handler is channel-like.

class zenoh.IValue

The IValue interface exposes how to recover a value’s payload in a binary-serialized format, as well as that
format’s encoding.

abstract property encoding: Encoding

The value’s encoding

abstract property payload: bytes

The value itself, as an array of bytes

class zenoh.ListCollector(timeout=None)
A simple collector that aggregates values into a list.

When used as a handler, it provides a callback that appends elements to a list, and provides a function that will
await the closing of the callback before returning said list.

property closure

The part of the handler that should be passed as a callback to a zenoh function.

property receiver

The part of the handler that should be used as the receiver when the handler is channel-like.

class zenoh.Queue(bound=None)
A binding for a Rust multi-producer, single-consumer queue implementation.

When used as a handler, it provides itself as the receiver, and will provide a callback that appends elements to
the queue.

Can be bounded by passing a maximum size as bound.

property closure: IClosure[In, None]

The part of the handler that should be passed as a callback to a zenoh function.

get(timeout=None)
Gets one element from the queue.

Raises a StopIteration exception if the queue was closed before the timeout ran out, this allows using
the Queue as an iterator in for-loops. Raises a TimeoutError if the timeout ran out.

Parameters
timeout (float | None) –

get_remaining(timeout=None)
Awaits the closing of the queue, returning the remaining queued values in a list. The values inserted into
the queue up until this happens will be available through get.

Raises a TimeoutError if the timeout in seconds provided was exceeded before closing, whose args[0]
will contain the elements that were collected before timing out.

Parameters
timeout (float | None) –

Return type
List[In]

1.3. Get keys/values from zenoh 23

zenoh-python, Release 0.10.1-rc

put(value)
Puts one element on the queue.

Raises a PyBrokenPipeError if the Queue has been closed.

property receiver: Queue

The part of the handler that should be used as the receiver when the handler is channel-like.

24 Chapter 1. Quick start examples:

PYTHON MODULE INDEX

z
zenoh, 22

25

zenoh-python, Release 0.10.1-rc

26 Python Module Index

INDEX

A
APP_CUSTOM() (zenoh.Encoding static method), 14
APP_FLOAT() (zenoh.Encoding static method), 14
APP_INTEGER() (zenoh.Encoding static method), 14
APP_JSON() (zenoh.Encoding static method), 14
APP_OCTET_STREAM() (zenoh.Encoding static method),

14
APP_PROPERTIES() (zenoh.Encoding static method), 14
APP_SQL() (zenoh.Encoding static method), 14
APP_X_WWW_FORM_URLENCODED() (zenoh.Encoding

static method), 14
APP_XHTML_XML() (zenoh.Encoding static method), 14
APP_XML() (zenoh.Encoding static method), 14
append() (zenoh.Encoding method), 15
autocanonize() (zenoh.KeyExpr static method), 11
autoencode() (zenoh.Value static method), 13

B
BACKGROUND() (zenoh.Priority static method), 17
BEST_EFFORT() (zenoh.Reliability static method), 18
BLOCK() (zenoh.CongestionControl static method), 16

C
call (zenoh.Closure property), 22
call (zenoh.IClosure property), 22
close() (zenoh.Session method), 6
Closure (class in zenoh), 22
closure (zenoh.Handler property), 22
closure (zenoh.IHandler property), 22
closure (zenoh.ListCollector property), 23
closure (zenoh.Queue property), 23
Config (class in zenoh), 5
config() (zenoh.Session method), 6
CongestionControl (class in zenoh), 16

D
DATA() (zenoh.Priority static method), 17
DATA_HIGH() (zenoh.Priority static method), 17
DATA_LOW() (zenoh.Priority static method), 17
declare_keyexpr() (zenoh.Session method), 6
declare_publisher() (zenoh.Session method), 6

declare_pull_subscriber() (zenoh.Session method),
7

declare_queryable() (zenoh.Session method), 7
declare_subscriber() (zenoh.Session method), 8
decode_parameters() (zenoh.Query method), 18
decode_parameters() (zenoh.Selector method), 20
delete() (zenoh.Publisher method), 16
DELETE() (zenoh.SampleKind static method), 13
delete() (zenoh.Session method), 9
drop (zenoh.Closure property), 22
drop (zenoh.IClosure property), 22
DROP() (zenoh.CongestionControl static method), 16

E
EMPTY() (zenoh.Encoding static method), 14
Encoding (class in zenoh), 14
encoding (zenoh.IValue property), 23
encoding (zenoh.Sample property), 12
err (zenoh.Reply property), 21

F
from_file() (zenoh.Config static method), 5
from_json5() (zenoh.Config static method), 5
from_obj() (zenoh.Config static method), 5
from_str() (zenoh.Encoding static method), 15

G
get() (zenoh.Queue method), 23
get() (zenoh.Session method), 9
get_json() (zenoh.Config method), 5
get_remaining() (zenoh.Queue method), 23
get_time (zenoh.Timestamp property), 22

H
Handler (class in zenoh), 22
Hello (class in zenoh), 5

I
IClosure (class in zenoh), 22
IHandler (class in zenoh), 22
IMAGE_GIF() (zenoh.Encoding static method), 14

27

zenoh-python, Release 0.10.1-rc

IMAGE_JPEG() (zenoh.Encoding static method), 15
IMAGE_PNG() (zenoh.Encoding static method), 15
includes() (zenoh.KeyExpr method), 12
Info (class in zenoh), 11
info() (zenoh.Session method), 10
init_logger() (in module zenoh), 4
insert_json5() (zenoh.Config method), 5
INTERACTIVE_HIGH() (zenoh.Priority static method), 17
INTERACTIVE_LOW() (zenoh.Priority static method), 17
intersects() (zenoh.KeyExpr method), 12
is_ok (zenoh.Reply property), 21
IValue (class in zenoh), 23

K
key_expr (zenoh.Publisher property), 16
key_expr (zenoh.Query property), 19
key_expr (zenoh.Sample property), 12
key_expr (zenoh.Selector property), 20
KeyExpr (class in zenoh), 11
kind (zenoh.Sample property), 12

L
ListCollector (class in zenoh), 23
locators (zenoh.Hello property), 5

M
module

zenoh, 4, 22

O
ok (zenoh.Reply property), 21
open() (in module zenoh), 4

P
parameters (zenoh.Query property), 19
parameters (zenoh.Selector property), 20
payload (zenoh.IValue property), 23
payload (zenoh.Sample property), 12
peers_zid() (zenoh.Info method), 11
Priority (class in zenoh), 17
Publisher (class in zenoh), 16
pull() (zenoh.PullSubscriber method), 18
PullSubscriber (class in zenoh), 18
put() (zenoh.Publisher method), 16
put() (zenoh.Queue method), 23
PUT() (zenoh.SampleKind static method), 13
put() (zenoh.Session method), 10

Q
Query (class in zenoh), 18
Queryable (class in zenoh), 21
QueryConsolidation (class in zenoh), 20
QueryTarget (class in zenoh), 20

Queue (class in zenoh), 23

R
REAL_TIME() (zenoh.Priority static method), 17
receiver (zenoh.Handler property), 22
receiver (zenoh.IHandler property), 23
receiver (zenoh.ListCollector property), 23
receiver (zenoh.Queue property), 24
Reliability (class in zenoh), 18
RELIABLE() (zenoh.Reliability static method), 18
replier_id (zenoh.Reply property), 21
Reply (class in zenoh), 21
reply() (zenoh.Query method), 19
reply_err() (zenoh.Query method), 19
routers_zid() (zenoh.Info method), 11

S
Sample (class in zenoh), 12
SampleKind (class in zenoh), 13
scout() (in module zenoh), 4
seconds_since_unix_epoch (zenoh.Timestamp prop-

erty), 22
Selector (class in zenoh), 19
selector (zenoh.Query property), 19
Session (class in zenoh), 6
set_parameters (zenoh.Selector property), 20
Subscriber (class in zenoh), 17

T
TEXT_CSS() (zenoh.Encoding static method), 15
TEXT_CSV() (zenoh.Encoding static method), 15
TEXT_HTML() (zenoh.Encoding static method), 15
TEXT_JAVASCRIPT() (zenoh.Encoding static method),

15
TEXT_JSON() (zenoh.Encoding static method), 15
TEXT_PLAIN() (zenoh.Encoding static method), 15
TEXT_XML() (zenoh.Encoding static method), 15
Timestamp (class in zenoh), 22
timestamp (zenoh.Sample property), 13

U
undeclare() (zenoh.KeyExpr method), 12
undeclare() (zenoh.Publisher method), 16
undeclare() (zenoh.PullSubscriber method), 18
undeclare() (zenoh.Queryable method), 21
undeclare() (zenoh.Subscriber method), 17

V
Value (class in zenoh), 13
value (zenoh.Query property), 19
value (zenoh.Sample property), 13

W
whatami (zenoh.Hello property), 5

28 Index

zenoh-python, Release 0.10.1-rc

Z
zenoh

module, 4, 22
ZenohId (class in zenoh), 21
zid (zenoh.Hello property), 5
zid() (zenoh.Info method), 11

Index 29

	Quick start examples:
	Publish a key/value pair onto Zenoh
	Subscribe to a set of keys with Zenoh
	Get keys/values from zenoh
	module zenoh
	Hello
	Config
	Session
	Info
	KeyExpr
	Sample
	SampleKind
	Value
	Encoding
	Publisher
	CongestionControl
	Priority
	Subscriber
	PullSubscriber
	Reliability
	Query
	Selector
	QueryTarget
	QueryConsolidation
	Reply
	Queryable
	ZenohId
	Timestamp

	Python Module Index
	Index

