
zenoh-python
Release 0.10.0-rc

Sep 28, 2023

Contents

1 Quick start examples: 3
1.1 Publish a key/value pair onto Zenoh . 3
1.2 Subscribe to a set of keys with Zenoh . 3
1.3 Get keys/values from zenoh . 3

Python Module Index 19

Index 21

i

ii

zenoh-python, Release 0.10.0-rc

[Zenoh](https://zenoh.io) /zeno/ is a stack that unifies data in motion, data at rest and computations. It elegantly blends
traditional pub/sub with geo distributed storage, queries and computations, while retaining a level of time and space
efficiency that is well beyond any of the mainstream stacks.

Before delving into the examples, we need to introduce few Zenoh concepts. First off, in Zenoh you will deal with
Resources, where a resource is made up of a key and a value. The other concept you’ll have to familiarize yourself
with are key expressions, such as robot/sensor/temp, robot/sensor/*, robot/**, etc. As you can
gather, the above key expression denotes set of keys, while the * and ** are wildcards representing respectively (1) a
single chunk (non-empty sequence of characters that doesn’t contain /), and (2) any amount of chunks (including 0).

Below are some examples that highlight these key concepts and show how easy it is to get started with.

Contents 1

https://zenoh.io

zenoh-python, Release 0.10.0-rc

2 Contents

CHAPTER 1

Quick start examples:

1.1 Publish a key/value pair onto Zenoh

>>> import zenoh
>>> z = zenoh.open()
>>> z.put('/demo/example/hello', 'Hello World!')

1.2 Subscribe to a set of keys with Zenoh

>>> import zenoh, time
>>> def listener(sample):
>>> print(f"{sample.key_expr} => {sample.payload.decode('utf-8')}")
>>>
>>> z = zenoh.open()
>>> subscriber = z.subscribe('/demo/example/**', listener)
>>> time.sleep(60)
>>> subscriber.undeclare()

1.3 Get keys/values from zenoh

>>> import zenoh
>>> z = zenoh.open()
>>> for response in z.get('/demo/example/**', zenoh.Queue()):
>>> response = response.ok
>>> print(f"{response.key_expr} => {response.payload.decode('utf-8')}")

3

zenoh-python, Release 0.10.0-rc

1.3.1 module zenoh

zenoh.init_logger()
Initialize the logger used by the Rust implementation of this API.

Once initialized, you can configure the logs displayed by the API using the RUST_LOG environment variable.
For instance, start python with the debug logs available:

$ RUST_LOG=debug python

More details on the RUST_LOG configuration on https://docs.rs/env_logger/latest/env_logger

zenoh.open(*args, **kwargs)
Open a Zenoh session.

Parameters config (Config) – The configuration of the Zenoh session

Return type Session

Example

>>> import zenoh
>>> s = zenoh.open(zenoh.Config())

zenoh.scout(handler: Union[zenoh.closures.IHandler[zenoh.value.Hello, typing.Any, typ-
ing.Any][zenoh.value.Hello, Any, Any], zenoh.closures.IClosure[zenoh.value.Hello,
typing.Any][zenoh.value.Hello, Any], Tuple[zenoh.closures.IClosure, Any],
Tuple[Callable[[zenoh.value.Hello], Any], Callable[[], None], Any], Tu-
ple[Callable[[zenoh.value.Hello], Any], Callable[[], None]], Callable[[zenoh.value.Hello],
Any]] = None, what: str = None, config: zenoh.config.Config = None, timeout=None)

Scout for routers and/or peers.

This spawns a task that periodically sends scout messages for a specified duration and returns a list of received
Hello messages.

Parameters

• what – The kind of zenoh process to scout for

• config – The configuration to use for scouting

• timeout – the duration of scout (in seconds)

• handler –

Return type list of Hello

Example

>>> import zenoh
>>> for hello in zenoh.scout(what = "peer|router", timeout=1.0).receiver():
... print(hello)

Hello

class zenoh.Hello
Represents a single Zenoh node discovered through scouting.

locators
The locators through which this node may be adressed.

4 Chapter 1. Quick start examples:

https://docs.rs/env_logger/latest/env_logger

zenoh-python, Release 0.10.0-rc

whatami
The node’s type, returning either None, ‘peer’, ‘router’, or ‘client’.

zid
The node’s Zenoh UUID.

Config

class zenoh.Config

static from_file(filename: str)
Reads the configuration from a file. The file’s extension must be json, json5 or yaml.

static from_json5(json: str)
Reads the configuration from a JSON5 string.

JSON5 is a superset of JSON, so any JSON string is a valid input for this function.

static from_obj(obj)
Reads the configuration from obj as if it was a JSON file.

get_json(path: str)→ str
Returns the part of the configuration at path, in a JSON-serialized form.

insert_json5(path: str, value: str)→ str
Inserts the provided value (read from JSON) at the given path in the configuration.

Session

class zenoh.Session
A Zenoh Session, the core interraction point with a Zenoh network.

Note that most applications will only need a single instance of Session. You should _never_ construct one ses-
sion per publisher/subscriber, as this will significantly increase the size of your Zenoh network, while preventing
potential locality-based optimizations.

close()
Attempts to close the Session.

The session will only be closed if all publishers, subscribers and queryables based on it have been unde-
clared, and there are no more python references to it.

config()→ zenoh.config.Config
Returns a configuration object that can be used to alter the session’s configuration at runtime.

Note that in Python specifically, the config you passed to the session becomes the result of this function if
you passed one, letting you keep using it.

declare_keyexpr(keyexpr: Union[KeyExpr, _KeyExpr, str])→ zenoh.keyexpr.KeyExpr
Informs Zenoh that you intend to use the provided Key Expression repeatedly.

This function returns an optimized representation of the passed keyexpr.

It is generally not needed to declare key expressions, as declaring a subscriber, a queryable, or a publisher
will also inform Zenoh of your intent to use their key expressions repeatedly.

declare_publisher(keyexpr: Union[KeyExpr, _KeyExpr, str], priority: zenoh.enums.Priority =
None, congestion_control: zenoh.enums.CongestionControl = None)

Declares a publisher, which may be used to send values repeatedly onto a same key expression.

1.3. Get keys/values from zenoh 5

zenoh-python, Release 0.10.0-rc

Written resources that match the given key will only be sent on the network if matching subscribers exist
in the system.

Parameters

• keyexpr – The key expression to publish to

• priority – The priority to use when routing the published data

• congestion_control – The congestion control to use when routing the published
data

Return type Publisher

Examples

>>> import zenoh
>>> s = zenoh.open({})
>>> pub = s.declare_publisher('key/expression')
>>> pub.put('value')

declare_pull_subscriber(keyexpr: Union[KeyExpr, _KeyExpr, str], handler:
Union[zenoh.closures.IHandler[zenoh.value.Sample, typ-
ing.Any, typing.Any][zenoh.value.Sample, Any, Any],
zenoh.closures.IClosure[zenoh.value.Sample, typ-
ing.Any][zenoh.value.Sample, Any], Tuple[zenoh.closures.IClosure,
Any], Tuple[Callable[[zenoh.value.Sample], Any], Callable[[],
None], Any], Tuple[Callable[[zenoh.value.Sample], Any],
Callable[[], None]], Callable[[zenoh.value.Sample],
Any]], reliability: zenoh.enums.Reliability = None) →
zenoh.session.PullSubscriber

Declares a pull-mode subscriber, which will receive a single published sample with a key expression
intersecting keyexpr any time its pull method is called.

These samples are passed to the handler’s closure as instances of the Sample class. The handler can
typically be a queue or a callback. The handler’s receiver is returned as the receiver field of the returned
PullSubscriber.

Parameters

• keyexpr – The key expression to subscribe to

• handler –

• reliability – the reliability to use when routing the subscribed samples

Return type PullSubscriber

Examples

>>> import zenoh
>>> s = zenoh.open({})
>>> sub = s.declare_pull_subscriber('key/expression', lambda sample:
... print(f"Received '{sample.key_expr}': '{sample.payload.decode('utf-8
→˓')}'"))
...
>>> sub.pull()

6 Chapter 1. Quick start examples:

zenoh-python, Release 0.10.0-rc

declare_queryable(keyexpr: Union[KeyExpr, _KeyExpr, str], handler:
Union[zenoh.closures.IHandler[zenoh.queryable.Query, typ-
ing.Any, typing.Any][zenoh.queryable.Query, Any, Any],
zenoh.closures.IClosure[zenoh.queryable.Query, typ-
ing.Any][zenoh.queryable.Query, Any], Tuple[zenoh.closures.IClosure,
Any], Tuple[Callable[[zenoh.queryable.Query], Any], Callable[[], None],
Any], Tuple[Callable[[zenoh.queryable.Query], Any], Callable[[], None]],
Callable[[zenoh.queryable.Query], Any]], complete: bool = None)

Declares a queryable, which will receive queries intersecting with keyexpr.

These queries are passed to the handler as instances of the Query class. The handler can typically be a
queue or a callback. The handler’s receiver is returned as the receiver field of the returned Queryable. The
replies can be sent back by calling the reply‘function of the ‘Query.

Examples

Using a callback:

>>> import zenoh
>>> s = zenoh.open({})
>>> qabl = s.declare_queryable('key/expression', lambda query:
... query.reply(zenoh.Sample('key/expression', 'value')))

Using a queue:

>>> import zenoh
>>> s = zenoh.open({})
>>> qabl = s.declare_queryable('key/expression', zenoh.Queue())
>>> while True:
... query = qabl.receiver.get()
... query.reply(zenoh.Sample('key/expression', 'value'))
... del query

IMPORTANT: due to how RAII and Python work, you MUST bind this function’s return value to a variable
in order for it to function as expected. This is because as soon as a value is no longer referenced in Python,
that value’s destructor will run, which will undeclare your queryable, stopping it immediately.

declare_subscriber(keyexpr: Union[KeyExpr, _KeyExpr, str], han-
dler: Union[zenoh.closures.IHandler[zenoh.value.Sample,
typing.Any, typing.Any][zenoh.value.Sample, Any,
Any], zenoh.closures.IClosure[zenoh.value.Sample, typ-
ing.Any][zenoh.value.Sample, Any], Tuple[zenoh.closures.IClosure,
Any], Tuple[Callable[[zenoh.value.Sample], Any], Callable[[], None],
Any], Tuple[Callable[[zenoh.value.Sample], Any], Callable[[], None]],
Callable[[zenoh.value.Sample], Any]], reliability: zenoh.enums.Reliability =
None)→ zenoh.session.Subscriber

Declares a subscriber, which will receive any published sample with a key expression intersecting
keyexpr.

These samples are provided to the handler as instances of the Sample class. The handler can typically be
a queue or a callback. The handler’s receiver is returned as the receiver field of the returned Subscriber.

Parameters

• keyexpr – The key expression to subscribe to

• handler –

• reliability – the reliability to use when routing the subscribed samples

Return type Subscriber

1.3. Get keys/values from zenoh 7

zenoh-python, Release 0.10.0-rc

Examples

Using a callback:

>>> import zenoh
>>> s = zenoh.open({})
>>> sub = s.declare_subscriber('key/expression', lambda sample:
... print(f"Received '{sample.key_expr}': '{sample.payload.decode('utf-8
→˓')}'")

Using a queue:

>>> import zenoh
>>> s = zenoh.open({})
>>> sub = s.declare_subscriber('key/expression', zenoh.Queue())
>>> for sample in sub.receiver:
>>> print(f"{sample.key_expr}: {sample.payload.decode('utf-8')}")

IMPORTANT: due to how RAII and Python work, you MUST bind this function’s return value to a variable
in order for it to function as expected. This is because as soon as a value is no longer referenced in
Python, that value’s destructor will run, which will undeclare your subscriber, deactivating the subscription
immediately.

delete(keyexpr: Union[KeyExpr, _KeyExpr, str], priority: zenoh.enums.Priority = None, conges-
tion_control: zenoh.enums.CongestionControl = None)

Deletes the values associated with the keys included in keyexpr.

This uses the same mechanisms as session.put, and will be received by subscribers. This operation is
especially useful with storages.

Parameters

• keyexpr – The key expression to publish

• priority – The priority to use when routing the delete

• congestion_control – The congestion control to use when routing the delete

Examples

>>> import zenoh
>>> s = zenoh.open({})
>>> s.delete('key/expression')

get(selector: Union[Selector, _Selector, KeyExpr, _KeyExpr, str], handler:
Union[zenoh.closures.IHandler[zenoh.value.Reply, typing.Any, ~Receiver][zenoh.value.Reply,
Any, Receiver], zenoh.closures.IClosure[zenoh.value.Reply, typing.Any][zenoh.value.Reply,
Any], Tuple[zenoh.closures.IClosure, Receiver], Tuple[Callable[[zenoh.value.Reply], Any],
Callable[[], None], Receiver], Tuple[Callable[[zenoh.value.Reply], Any], Callable[[], None]],
Callable[[zenoh.value.Reply], Any]], consolidation: zenoh.enums.QueryConsolidation = None,
target: zenoh.enums.QueryTarget = None, value: Union[zenoh.value.IValue, bytes, str, int, float,
object] = None)→ Receiver
Emits a query, which queryables with intersecting selectors will be able to reply to.

The replies are provided to the given handler as instances of the Reply class. The handler can typically be
a queue, a single callback or a pair of callbacks. The handler’s receiver is returned by the get function.

Parameters

• selector – The selection of keys to query

• handler –

8 Chapter 1. Quick start examples:

zenoh-python, Release 0.10.0-rc

• consolidation – The consolidation to apply to replies

• target – The queryables that should be target to this query

• value – An optional value to attach to this query

Returns The receiver of the handler

Return type Receiver

Examples

Using a queue:

>>> import zenoh
>>> s = zenoh.open({})
>>> for reply in s.get('key/expression', zenoh.Queue()):
... try:
... print(f"Received '{reply.ok.key_expr}': '{reply.ok.payload.decode(
→˓'utf-8')}'")
... except:
... print(f"Received ERROR: '{reply.err.payload.decode('utf-8')}'")

Using a single callback:

>>> s.get('key/expression', lambda reply:
... print(f"Received '{reply.ok.key_expr}': '{reply.ok.payload.decode(
→˓'utf-8')}'")
... if reply.ok is not None else print(f"Received ERROR: '{reply.err.
→˓payload.decode('utf-8')}'"))

Using a reply callback and a termination callback:

>>> s.get('key/expression', (
... lambda reply:
... print(f"Received '{reply.ok.key_expr}': '{reply.ok.payload.decode(
→˓'utf-8')}'")
... if reply.ok is not None else print(f"Received ERROR: '{reply.err.
→˓payload.decode('utf-8')}'"),
... lambda:
... print("No more replies")))

info()
Returns an accessor for informations about this Session

put(keyexpr: Union[KeyExpr, _KeyExpr, str], value: Union[zenoh.value.IValue, bytes, str, int,
float, object], encoding=None, priority: zenoh.enums.Priority = None, congestion_control:
zenoh.enums.CongestionControl = None, sample_kind: zenoh.enums.SampleKind = None)
Sends a value over Zenoh.

Subscribers on an expression that intersect with keyexpr will receive the sample. Storages will store the
value if keyexpr is non-wild, or update the values for all known keys that are included in keyexpr if it
is wild.

Parameters

• keyexpr – The key expression to publish

• value – The value to send

• priority – The priority to use when routing the published data

1.3. Get keys/values from zenoh 9

zenoh-python, Release 0.10.0-rc

• congestion_control – The congestion control to use when routing the published
data

• sample_kind – The kind of sample to send

Examples

>>> import zenoh
>>> s = zenoh.open({})
>>> s.put('key/expression', 'value')

Info

class zenoh.Info(session: _Session)

peers_zid()→ List[zenoh.value.ZenohId]
Returns the neighbooring peers’ identifiers

routers_zid()→ List[zenoh.value.ZenohId]
Returns the neighbooring routers’ identifiers

zid()→ zenoh.value.ZenohId
Returns this Zenoh Session’s identifier

KeyExpr

class zenoh.KeyExpr
Zenoh’s address space is designed around keys which serve as the names of ressources.

Keys are slash-separated lists of non-empty UTF8 strings. They may not contain the following characters:
$*#?.

Zenoh’s operations are executed on key expressions, a small language that allows the definition of sets of keys
via the use of wildcards:

• * is the single-chunk wildcard, and will match any chunk: a/*/c will match a/b/c, a/hello/c,
etc. . .

• ** is the 0 or more chunks wildcard: a/**/c matches a/c, a/b/c, a/b/hello/c, etc. . .

• $* is the subchunk wildcard, it will match any amount of non-/ characters: a/b$* matches a/b, a/
because, a/blue. . . but not a/c nor a/blue/c

To allow for better performance and gain the property that two key expressions define the same set if and only
if they are the same string, the rules of canon form are mandatory for a key expression to be propagated by a
Zenoh network:

• **/** may not exist, as it could always be replaced by the shorter **,

• **/* may not exist, and must be written as its equivalent */** instead,

• $* may not exist alone in a chunk, as it must be written * instead.

The KeyExpr.autocanonize constructor exists to correct eventual infrigements of the canonization rules.

A KeyExpr is a string that has been validated to be a valid Key Expression.

static autocanonize(expr: str)→ zenoh.keyexpr.KeyExpr
This alternative constructor for key expressions will attempt to canonize the passed expression before
checking if it is valid.

10 Chapter 1. Quick start examples:

zenoh-python, Release 0.10.0-rc

Raises a zenoh.ZError exception if expr is not a valid key expression.

includes(other: Union[KeyExpr, _KeyExpr, str])→ bool
This method returns True if all of the keys defined by other also belong to the set defined by self.

intersects(other: Union[KeyExpr, _KeyExpr, str])→ bool
This method returns True if there exists at least one key that belongs to both sets defined by self and
other.

undeclare(session: Session)
Undeclares a key expression previously declared on the session.

Sample

class zenoh.Sample
A KeyExpr-Value pair, annotated with the kind (PUT or DELETE) of publication used to emit it and a times-
tamp.

encoding
A shortcut to self.value.encoding

key_expr
The sample’s key expression

kind
The sample’s kind

payload
A shortcut to self.value.payload

timestamp
The sample’s timestamp. May be None.

value
The sample’s value

SampleKind

class zenoh.SampleKind
Similar to an HTTP METHOD: only PUT and DELETE are currently supported.

static DELETE()→ zenoh.enums.SampleKind

static PUT()→ zenoh.enums.SampleKind

Value

class zenoh.Value
A Value is a pair of a binary payload, and a mime-type-like encoding string.

When constructed with encoding==None, the encoding will be selected depending on the payload’s type.

static autoencode(value: Union[zenoh.value.IValue, bytes, str, int, float, object]) →
zenoh.value.Value

Automatically encodes the value based on its type

1.3. Get keys/values from zenoh 11

zenoh-python, Release 0.10.0-rc

Encoding

class zenoh.Encoding

static APP_CUSTOM()→ zenoh.enums.Encoding

static APP_FLOAT()→ zenoh.enums.Encoding

static APP_INTEGER()→ zenoh.enums.Encoding

static APP_JSON()→ zenoh.enums.Encoding

static APP_OCTET_STREAM()→ zenoh.enums.Encoding

static APP_PROPERTIES()→ zenoh.enums.Encoding

static APP_SQL()→ zenoh.enums.Encoding

static APP_XHTML_XML()→ zenoh.enums.Encoding

static APP_XML()→ zenoh.enums.Encoding

static APP_X_WWW_FORM_URLENCODED()→ zenoh.enums.Encoding

static EMPTY()→ zenoh.enums.Encoding

static IMAGE_GIF()→ zenoh.enums.Encoding

static IMAGE_JPEG()→ zenoh.enums.Encoding

static IMAGE_PNG()→ zenoh.enums.Encoding

static TEXT_CSS()→ zenoh.enums.Encoding

static TEXT_CSV()→ zenoh.enums.Encoding

static TEXT_HTML()→ zenoh.enums.Encoding

static TEXT_JAVASCRIPT()→ zenoh.enums.Encoding

static TEXT_JSON()→ zenoh.enums.Encoding

static TEXT_PLAIN()→ zenoh.enums.Encoding

static TEXT_XML()→ zenoh.enums.Encoding

append(s: str)

static from_str(s: str)→ zenoh.enums.Encoding

Publisher

class zenoh.Publisher(p: _Publisher)
Use Publisher (constructed with Session.declare_publisher) when you want to send values often
for the same key expression, as declaring them informs Zenoh that this is you intent, and optimizations will be
set up to do so.

delete()
An optimised version of session.delete(self.key_expr)

key_expr
This Publisher’s key expression

12 Chapter 1. Quick start examples:

zenoh-python, Release 0.10.0-rc

put(value: Union[zenoh.value.IValue, bytes, str, int, float, object], encoding: zenoh.enums.Encoding =
None)
An optimised version of session.put(self.key_expr, value, encoding=encoding)

undeclare()
Stops the publisher.

CongestionControl

class zenoh.CongestionControl
Defines the network’s behaviour regarding a message when heavily congested.

static BLOCK()→ zenoh.enums.CongestionControl
Prevents the message from being dropped at all cost. In the face of heavy congestion on a part of the
network, this could result in your publisher node blocking.

static DROP()→ zenoh.enums.CongestionControl
Allows the message to be dropped if all buffers are full.

Priority

class zenoh.Priority
The priority of a sending operation.

They are ordered à la Linux priority: Priority.REAL_TIME() < Priority.
INTERACTIVE_HIGH() < Priority.INTERACTIVE_LOW() < Priority.DATA() <
Priority.BACKGROUND()

static BACKGROUND()→ zenoh.enums.Priority

static DATA()→ zenoh.enums.Priority

static DATA_HIGH()→ zenoh.enums.Priority

static DATA_LOW()→ zenoh.enums.Priority

static INTERACTIVE_HIGH()→ zenoh.enums.Priority

static INTERACTIVE_LOW()→ zenoh.enums.Priority

static REAL_TIME()→ zenoh.enums.Priority

Subscriber

class zenoh.Subscriber(s: _Subscriber, receiver=None)
A handle to a subscription.

Its main purpose is to keep the subscription active as long as it exists.

When constructed through Session.declare_subscriber(session, keyexpr, handler), it
exposes handler’s receiver through self.receiver.

undeclare()
Undeclares the subscription

1.3. Get keys/values from zenoh 13

zenoh-python, Release 0.10.0-rc

PullSubscriber

class zenoh.PullSubscriber(s: _PullSubscriber, receiver=None)
A handle to a pull subscription.

Its main purpose is to keep the subscription active as long as it exists.

When constructed through Session.declare_pull_subscriber(session, keyexpr,
handler), it exposes handler’s receiver through self.receiver.

Calling self.pull() will prompt the Zenoh network to send a new sample when available.

pull()
Prompts the Zenoh network to send a new sample if available. Note that this sample will not be returned
by this function, but provided to the handler’s callback.

undeclare()
Undeclares the subscription

Reliability

class zenoh.Reliability
Used by subscribers to inform the network of the reliability it wishes to obtain.

static BEST_EFFORT()→ zenoh.enums.CongestionControl
Informs the network that dropping some messages is acceptable

static RELIABLE()→ zenoh.enums.CongestionControl
Informs the network that this subscriber wishes for all publications to reliably reach it.

Note that if a publisher puts a sample with the CongestionControl.DROP() option, this reliability
requirement may be infringed to prevent slow readers from blocking the network.

Query

class zenoh.Query

decode_parameters()→ Dict[str, str]
Decodes the value selector into a dictionary.

Raises a ZError if duplicate keys are found, as they might otherwise be used for HTTP Parameter Pollution
like attacks.

key_expr
The query’s targeted key expression

parameters
The query’s value selector. If you’d rather not bother with parsing it yourself, use self.
decode_parameters() instead.

reply(sample: zenoh.value.Sample)
Allows you to reply to a query. You may send any amount of replies to a single query, including 0.

selector
The query’s selector as a whole.

value
The query’s value.

14 Chapter 1. Quick start examples:

zenoh-python, Release 0.10.0-rc

Selector

class zenoh.Selector
A selector is the combination of a [Key Expression](crate::prelude::KeyExpr), which defines the set of keys that
are relevant to an operation, and a parameters, a set of key-value pairs with a few uses:

• specifying arguments to a queryable, allowing the passing of Remote Procedure Call parameters

• filtering by value,

• filtering by metadata, such as the timestamp of a value,

When in string form, selectors look a lot like a URI, with similar semantics:

• the key_expr before the first ? must be a valid key expression.

• the parameters after the first ? should be encoded like the query section of a URL:

– key-value pairs are separated by &,

– the key and value are separated by the first =,

– in the absence of =, the value is considered to be the empty string,

– both key and value should use percent-encoding to escape characters,

– defining a value for the same key twice is considered undefined behavior.

Zenoh intends to standardize the usage of a set of keys. To avoid conflicting with RPC parameters, the Zenoh
team has settled on reserving the set of keys that start with non-alphanumeric characters.

This document will summarize the standardized keys for which Zenoh provides helpers to facilitate coherent
behavior for some operations.

Queryable implementers are encouraged to prefer these standardized keys when implementing their associated
features, and to prefix their own keys to avoid having conflicting keys with other queryables.

Here are the currently standardized keys for Zenoh:

• _time: used to express interest in only values dated within a certain time range, values for this key must
be readable by the [Zenoh Time DSL](zenoh_util::time_range::TimeRange) for the value to be considered
valid.

• _filter: TBD Zenoh intends to provide helper tools to allow the value associated with this key to be
treated as a predicate that the value should fulfill before being returned. A DSL will be designed by the
Zenoh team to express these predicates.

decode_parameters()→ Dict[str, str]
Decodes the value selector part of the selector.

Raises a ZError if some keys were duplicated: duplicated keys are considered undefined behaviour, but we
encourage you to refuse to process incoming messages with duplicated keys, as they might be attempting
to use HTTP Parameter Pollution like exploits.

key_expr
The key expression part of the selector.

parameters
The value selector part of the selector.

set_parameters
The value selector part of the selector.

1.3. Get keys/values from zenoh 15

zenoh-python, Release 0.10.0-rc

QueryTarget

class zenoh.QueryTarget

QueryConsolidation

class zenoh.QueryConsolidation

Reply

class zenoh.Reply
A reply to a query (Session.get).

A single query can result in multiple replies from multiple queryables.

err
The reply’s error value.

Raises a ZError if the self is actually an ok reply.

ok
The reply’s inner data sample.

Raises a ZError if the self is actually an err reply.

replier_id
The reply’s sender’s id.

Queryable

class zenoh.Queryable(inner: _Queryable, receiver)
A handle to a queryable.

Its main purpose is to keep the queryable active as long as it exists.

When constructed through Session.declare_queryable(session, keyexpr, handler), it ex-
poses handler’s receiver through self.receiver.

undeclare()
Stops the queryable.

ZenohId

class zenoh.ZenohId
A Zenoh UUID

Timestamp

class zenoh.Timestamp
A timestamp taken from the Zenoh HLC (Hybrid Logical Clock).

These timestamps are guaranteed to be unique, as each machine annotates its perceived time with a UUID,
which is used as the least significant part of the comparison operation.

16 Chapter 1. Quick start examples:

zenoh-python, Release 0.10.0-rc

get_time
Returns the time part, as generated by the Zenoh HLC in NTP64 format (See https://datatracker.ietf.org/
doc/html/rfc5905#section-6).

seconds_since_unix_epoch
Returns the number of seconds since the Unix Epoch.

Considering the large number of seconds since the Unix Epoch, the precision of the resulting f64 is in the
order of microseconds. Therefore, it should not be used for comparison. Directly comparing Timestamp
objects is preferable.

class zenoh.Queue(bound: int = None)
A binding for a Rust multi-producer, single-consumer queue implementation.

When used as a handler, it provides itself as the receiver, and will provide a callback that appends elements to
the queue.

Can be bounded by passing a maximum size as bound.

closure
The part of the handler that should be passed as a callback to a zenoh function.

get(timeout: float = None)
Gets one element from the queue.

Raises a StopIteration exception if the queue was closed before the timeout ran out, this allows using
the Queue as an iterator in for-loops. Raises a TimeoutError if the timeout ran out.

get_remaining(timeout: float = None)→ List[In]
Awaits the closing of the queue, returning the remaining queued values in a list. The values inserted into
the queue up until this happens will be available through get.

Raises a TimeoutError if the timeout in seconds provided was exceeded before closing, whose
args[0] will contain the elements that were collected before timing out.

put(value)
Puts one element on the queue.

Raises a PyBrokenPipeError if the Queue has been closed.

receiver
The part of the handler that should be used as the receiver when the handler is channel-like.

class zenoh.ListCollector(timeout=None)
A simple collector that aggregates values into a list.

When used as a handler, it provides a callback that appends elements to a list, and provides a function that will
await the closing of the callback before returning said list.

closure
The part of the handler that should be passed as a callback to a zenoh function.

receiver
The part of the handler that should be used as the receiver when the handler is channel-like.

class zenoh.Closure(closure: Union[zenoh.closures.IHandler[~In, ~Out, typing.Any][In, Out,
Any], zenoh.closures.IClosure[~In, ~Out][In, Out], Tuple[Callable[[In], Out],
Callable[[], None]], Callable[[In], Out]], type_adaptor: Callable[[Any], In] =
None, prevent_direct_calls=False)

A Closure is a pair of a call function that will be used as a callback, and a drop function that will be called
when the closure is destroyed.

call
Returns the closure’s call function as a lambda.

1.3. Get keys/values from zenoh 17

https://datatracker.ietf.org/doc/html/rfc5905#section-6
https://datatracker.ietf.org/doc/html/rfc5905#section-6

zenoh-python, Release 0.10.0-rc

drop
Returns the closure’s destructor as a lambda.

class zenoh.Handler(input: Union[zenoh.closures.IHandler[~In, ~Out, ~Receiver][In, Out, Receiver],
zenoh.closures.IClosure[~In, ~Out][In, Out], Tuple[zenoh.closures.IClosure,
Receiver], Tuple[Callable[[In], Out], Callable[[], None], Receiver],
Tuple[Callable[[In], Out], Callable[[], None]], Callable[[In], Out]],
type_adaptor: Callable[[Any], In] = None, prevent_direct_calls=True)

A Handler is a value that may be converted into a callback closure for zenoh to use on one side, while possibly
providing a receiver for the data that zenoh would provide through that callback.

Note that the values will be piped onto a Queue before being sent to your handler by another Thread unless either:

a) input is already an instance of Closure or Handler where input.closure is an instance of
Closure

b) prevent_direct_calls is set to False

closure
The part of the handler that should be passed as a callback to a zenoh function.

receiver
The part of the handler that should be used as the receiver when the handler is channel-like.

class zenoh.IClosure
A Closure is a pair of a call function that will be used as a callback, and a drop function that will be called
when the closure is destroyed.

call
Returns the closure’s call function as a lambda.

drop
Returns the closure’s destructor as a lambda.

class zenoh.IHandler
A Handler is a value that may be converted into a callback closure for zenoh to use on one side, while possibly
providing a receiver for the data that zenoh would provide through that callback.

closure
The part of the handler that should be passed as a callback to a zenoh function.

receiver
The part of the handler that should be used as the receiver when the handler is channel-like.

class zenoh.IValue
The IValue interface exposes how to recover a value’s payload in a binary-serialized format, as well as that
format’s encoding.

encoding
The value’s encoding

payload
The value itself, as an array of bytes

18 Chapter 1. Quick start examples:

Python Module Index

z
zenoh, 17

19

zenoh-python, Release 0.10.0-rc

20 Python Module Index

Index

A
APP_CUSTOM() (zenoh.Encoding static method), 12
APP_FLOAT() (zenoh.Encoding static method), 12
APP_INTEGER() (zenoh.Encoding static method), 12
APP_JSON() (zenoh.Encoding static method), 12
APP_OCTET_STREAM() (zenoh.Encoding static

method), 12
APP_PROPERTIES() (zenoh.Encoding static method),

12
APP_SQL() (zenoh.Encoding static method), 12
APP_X_WWW_FORM_URLENCODED()

(zenoh.Encoding static method), 12
APP_XHTML_XML() (zenoh.Encoding static method),

12
APP_XML() (zenoh.Encoding static method), 12
append() (zenoh.Encoding method), 12
autocanonize() (zenoh.KeyExpr static method), 10
autoencode() (zenoh.Value static method), 11

B
BACKGROUND() (zenoh.Priority static method), 13
BEST_EFFORT() (zenoh.Reliability static method), 14
BLOCK() (zenoh.CongestionControl static method), 13

C
call (zenoh.Closure attribute), 17
call (zenoh.IClosure attribute), 18
close() (zenoh.Session method), 5
Closure (class in zenoh), 17
closure (zenoh.Handler attribute), 18
closure (zenoh.IHandler attribute), 18
closure (zenoh.ListCollector attribute), 17
closure (zenoh.Queue attribute), 17
Config (class in zenoh), 5
config() (zenoh.Session method), 5
CongestionControl (class in zenoh), 13

D
DATA() (zenoh.Priority static method), 13

DATA_HIGH() (zenoh.Priority static method), 13
DATA_LOW() (zenoh.Priority static method), 13
declare_keyexpr() (zenoh.Session method), 5
declare_publisher() (zenoh.Session method), 5
declare_pull_subscriber() (zenoh.Session

method), 6
declare_queryable() (zenoh.Session method), 6
declare_subscriber() (zenoh.Session method), 7
decode_parameters() (zenoh.Query method), 14
decode_parameters() (zenoh.Selector method), 15
delete() (zenoh.Publisher method), 12
DELETE() (zenoh.SampleKind static method), 11
delete() (zenoh.Session method), 8
drop (zenoh.Closure attribute), 17
drop (zenoh.IClosure attribute), 18
DROP() (zenoh.CongestionControl static method), 13

E
EMPTY() (zenoh.Encoding static method), 12
Encoding (class in zenoh), 12
encoding (zenoh.IValue attribute), 18
encoding (zenoh.Sample attribute), 11
err (zenoh.Reply attribute), 16

F
from_file() (zenoh.Config static method), 5
from_json5() (zenoh.Config static method), 5
from_obj() (zenoh.Config static method), 5
from_str() (zenoh.Encoding static method), 12

G
get() (zenoh.Queue method), 17
get() (zenoh.Session method), 8
get_json() (zenoh.Config method), 5
get_remaining() (zenoh.Queue method), 17
get_time (zenoh.Timestamp attribute), 16

H
Handler (class in zenoh), 18

21

zenoh-python, Release 0.10.0-rc

Hello (class in zenoh), 4

I
IClosure (class in zenoh), 18
IHandler (class in zenoh), 18
IMAGE_GIF() (zenoh.Encoding static method), 12
IMAGE_JPEG() (zenoh.Encoding static method), 12
IMAGE_PNG() (zenoh.Encoding static method), 12
includes() (zenoh.KeyExpr method), 11
Info (class in zenoh), 10
info() (zenoh.Session method), 9
init_logger() (in module zenoh), 4
insert_json5() (zenoh.Config method), 5
INTERACTIVE_HIGH() (zenoh.Priority static

method), 13
INTERACTIVE_LOW() (zenoh.Priority static method),

13
intersects() (zenoh.KeyExpr method), 11
IValue (class in zenoh), 18

K
key_expr (zenoh.Publisher attribute), 12
key_expr (zenoh.Query attribute), 14
key_expr (zenoh.Sample attribute), 11
key_expr (zenoh.Selector attribute), 15
KeyExpr (class in zenoh), 10
kind (zenoh.Sample attribute), 11

L
ListCollector (class in zenoh), 17
locators (zenoh.Hello attribute), 4

O
ok (zenoh.Reply attribute), 16
open() (in module zenoh), 4

P
parameters (zenoh.Query attribute), 14
parameters (zenoh.Selector attribute), 15
payload (zenoh.IValue attribute), 18
payload (zenoh.Sample attribute), 11
peers_zid() (zenoh.Info method), 10
Priority (class in zenoh), 13
Publisher (class in zenoh), 12
pull() (zenoh.PullSubscriber method), 14
PullSubscriber (class in zenoh), 14
put() (zenoh.Publisher method), 12
put() (zenoh.Queue method), 17
PUT() (zenoh.SampleKind static method), 11
put() (zenoh.Session method), 9

Q
Query (class in zenoh), 14

Queryable (class in zenoh), 16
QueryConsolidation (class in zenoh), 16
QueryTarget (class in zenoh), 16
Queue (class in zenoh), 17

R
REAL_TIME() (zenoh.Priority static method), 13
receiver (zenoh.Handler attribute), 18
receiver (zenoh.IHandler attribute), 18
receiver (zenoh.ListCollector attribute), 17
receiver (zenoh.Queue attribute), 17
Reliability (class in zenoh), 14
RELIABLE() (zenoh.Reliability static method), 14
replier_id (zenoh.Reply attribute), 16
Reply (class in zenoh), 16
reply() (zenoh.Query method), 14
routers_zid() (zenoh.Info method), 10

S
Sample (class in zenoh), 11
SampleKind (class in zenoh), 11
scout() (in module zenoh), 4
seconds_since_unix_epoch (zenoh.Timestamp

attribute), 17
Selector (class in zenoh), 15
selector (zenoh.Query attribute), 14
Session (class in zenoh), 5
set_parameters (zenoh.Selector attribute), 15
Subscriber (class in zenoh), 13

T
TEXT_CSS() (zenoh.Encoding static method), 12
TEXT_CSV() (zenoh.Encoding static method), 12
TEXT_HTML() (zenoh.Encoding static method), 12
TEXT_JAVASCRIPT() (zenoh.Encoding static

method), 12
TEXT_JSON() (zenoh.Encoding static method), 12
TEXT_PLAIN() (zenoh.Encoding static method), 12
TEXT_XML() (zenoh.Encoding static method), 12
Timestamp (class in zenoh), 16
timestamp (zenoh.Sample attribute), 11

U
undeclare() (zenoh.KeyExpr method), 11
undeclare() (zenoh.Publisher method), 13
undeclare() (zenoh.PullSubscriber method), 14
undeclare() (zenoh.Queryable method), 16
undeclare() (zenoh.Subscriber method), 13

V
Value (class in zenoh), 11
value (zenoh.Query attribute), 14
value (zenoh.Sample attribute), 11

22 Index

zenoh-python, Release 0.10.0-rc

W
whatami (zenoh.Hello attribute), 4

Z
zenoh (module), 4, 17
ZenohId (class in zenoh), 16
zid (zenoh.Hello attribute), 5
zid() (zenoh.Info method), 10

Index 23

	Quick start examples:
	Publish a key/value pair onto Zenoh
	Subscribe to a set of keys with Zenoh
	Get keys/values from zenoh

	Python Module Index
	Index

